Elucidating the Ticking of an In Vitro Circadian Clockwork
نویسندگان
چکیده
A biochemical oscillator can be reconstituted in vitro with three purified proteins, that displays the salient properties of circadian (daily) rhythms, including self-sustained 24-h periodicity that is temperature compensated. We analyze the biochemical basis of this oscillator by quantifying the time-dependent interactions of the three proteins (KaiA, KaiB, and KaiC) by electron microscopy and native gel electrophoresis to elucidate the timing of the formation of complexes among the Kai proteins. The data are used to derive a dynamic model for the in vitro oscillator that accurately reproduces the rhythms of KaiABC complexes and of KaiC phosphorylation, and is consistent with biophysical observations of individual Kai protein interactions. We use fluorescence resonance energy transfer (FRET) to confirm that monomer exchange among KaiC hexamers occurs. The model demonstrates that the function of this monomer exchange may be to maintain synchrony among the KaiC hexamers in the reaction, thereby sustaining a high-amplitude oscillation. Finally, we apply the first perturbation analyses of an in vitro oscillator by using temperature pulses to reset the phase of the KaiABC oscillator, thereby testing the resetting characteristics of this unique circadian oscillator. This study analyzes a circadian clockwork to an unprecedented level of molecular detail.
منابع مشابه
Cycling of CRYPTOCHROME Proteins Is Not Necessary for Circadian-Clock Function in Mammalian Fibroblasts
BACKGROUND An interlocked transcriptional-translational feedback loop (TTFL) is thought to generate the mammalian circadian clockwork in both the central pacemaker residing in the hypothalamic suprachiasmatic nuclei and in peripheral tissues. The core circadian genes, including Period1 and Period2 (Per1 and Per2), Cryptochrome1 and Cryptochrome2 (Cry1 and Cry2), Bmal1, and Clock are indispensab...
متن کاملFunctional characterization of phytochrome interacting factor 3 for the Arabidopsis thaliana circadian clockwork.
Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochromes and promotes interaction of these receptors with transcription factors including PHYTOCHROME INTERACTING FACTOR 3 (PIF3). PIF3 was shown to form in vitro a ternary complex with the G-box element of the promoters of LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (...
متن کاملThe Molecular Clockwork of the Fire Ant Solenopsis invicta
The circadian clock is a core molecular mechanism that allows organisms to anticipate daily environmental changes and adapt the timing of behaviors to maximize efficiency. In social insects, the ability to maintain the appropriate temporal order is thought to improve colony efficiency and fitness. We used the newly sequenced fire ant (Solenopsis invicta) genome to characterize the first ant cir...
متن کاملControl mechanism of the circadian clock for timing of cell division in vivo.
Cell division in many mammalian tissues is associated with specific times of day, but just how the circadian clock controls this timing has not been clear. Here, we show in the regenerating liver (of mice) that the circadian clock controls the expression of cell cycle-related genes that in turn modulate the expression of active Cyclin B1-Cdc2 kinase, a key regulator of mitosis. Among these gene...
متن کاملClockwork green—the circadian oscillator in Arabidopsis
Although rhythmic leaf movement in a higher plant was the first physiological process recognised to be under circadian control, our understanding of the molecular drives underlying circadian rhythms in plants is still limited. Genetic screens for mutants impaired with regard to circadian rhythmicity have identified components critical for clock function in the model plant Arabidopsis thaliana, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007